Dimensionally consistent learning with Buckingham Pi | ||
A concise guide to modelling the physics of embodied intelligence in soft robotics | ||
Enhancing computational fluid dynamics with machine learning | ||
An empirical mean-field model of symmetry-breaking in a turbulent wake | ||
Ensemble-SINDy: Robust sparse model discovery in the low-data, high-noise limit, with active learning and control | ||
Modern Koopman Theory for Dynamical Systems | ||
Kernel learning for robust dynamic mode decomposition: linear and nonlinear disambiguation optimization | ||
Optimal Sensor and Actuator Selection Using Balanced Model Reduction | ||
On the role of nonlinear correlations in reduced-order modelling | ||
PySINDy: A comprehensive Python package for robustsparse system identification | Alan A. Kaptanoglu, Brian M. de Silva, Urban Fasel, Kadierdan Kaheman, Andy J. Goldschmidt, Jared Callaham, Charles B. Delahunt, Zachary G. Nicolaou, Kathleen Champion, Jean-Christophe Loiseau, J. Nathan Kutz, Steven L. Brunton PySINDy: A comprehensive Python package for robust sparse system identification. Journal of Open Source Software, 7(69), 3994, | |
Applying machine learning to study fluid mechanics | ||
Promoting global stability in data-driven models of quadratic nonlinear dynamics | ||
Sparse nonlinear models of chaotic electroconvection | ||
Data-driven aerospace engineering: Reframing the industry with machine learning. | ||
Nonlinear stochastic modeling with Langevin regression. | ||
Data-driven discovery of Koopman eigenfunctions for control | ||
Data-driven resolvent analysis | ||
Learning dominant physical processes with data-driven balance models | ||
Modeling synchronization in forced turbulentoscillator flows | ||
Robust Principal Component Analysis for Particle Image Velocimetry | ||
Modal Analysis of Fluid Flows: Applications and Outlook | ||
Machine Learning for Fluid Mechanics | S. L. Brunton, B. R. Noack, and P. Koumoutsakos Annual Review of Fluid Mechanics, 52:477--508, 2020 | |
Data-driven discovery of coordinates and governing equations | ||
Randomized Matrix Decompositions using R | N. B. Erichson, S. Voronin, S. L. Brunton, and J. N. Kutz Journal of Statistical Software , 89(11):1–48 , 2019 | |
A Unified Framework for Sparse Relaxed Regularized Regression: SR3 | P. Zheng, T. Askham, S. L. Brunton, J. N. Kutz, and A. Y. Aravkin IEEE Access, 7(1):1404--1423, 2019 | |
Deep learning for universal linear embeddings of nonlinear dynamics | B. Lusch, J. N. Kutz, S. L. Brunton Nature Communications, 9(1):4950, 2018 | |
Sparse identification of nonlinear dynamics for model predictive control in the low-data limit | E. Kaiser, J. N. Kutz, and S. L. Brunton Proceedings of the Royal Society A, 474(2219), 2018 | |
Neural-inspired sensors enable sparse, efficient classification of spatiotemporal data | T. Mohren, T. L. Daniel, S. L. Brunton, and B. W. Brunton Proceedings of the National Academy of Sciences, 115(42):10564–10569, 2018 | |
Predicting shim gaps in aircraft assembly with machine learning and sparse sensing | K. Manohar, T. Hogan, J. Buttrick, A. G. Banerjee, J. N. Kutz, and S. L. Brunton Journal of Manufacturing Systems, 48(C):87-95, 2018 | |
Data-Driven Sparse Sensor Placement for Reconstruction: Demonstrating the Benefits of Exploiting Known Patterns | K. Manohar, B. W. Brunton, J. N. Kutz, and , S. L. Brunton IEEE Control Systems Magazine, 38(3):63-86, 2018 | |
Sparse reduced-order modeling: Sensor-based dynamics to full-state estimation | J. C. Loiseau, B. R. Noack, and S. L. Brunton Journal of Fluid Mechanics, 844:459–490, 2018 | |
Constrained sparse Galerkin regression | J. C. Loiseau and S. L. Brunton Journal of Fluid Mechanics, 838:42–67, 2018 | |
Modal Analysis of Fluid Flows: An Overview | K. Taira, S. L. Brunton, S. T. M. Dawson, C. W. Rowley, T. Colonius, B. J. McKeon, O. Schmidt, S. Gordeyev, V. Theofilis, and L. S. Ukeiley AIAA Journal, 55(12):4013–4041, 2017 | |
Intracycle angular velocity control of cross-flow turbines | B. Strom, S. L. Brunton, and B. Polagye Nature Energy, 2(17103):1–9, 2017 | |
Chaos as an intermittently forced linear system | S. L. Brunton, B. W. Brunton, J. L. Proctor, E. Kaiser, and J. N. Kutz Nature Communications, 8(19):1–9, 2017 | |
Data-driven discovery of partial differential equations | S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz Science Advances, 3:e1602614, 2017 | |
Sparse sensor placement optimization for classification | B. W. Brunton, S. L. Brunton, J. L. Proctor, and J. N. Kutz SIAM Journal on Applied Mathematics, 76(5):2099–2122, 2016 | |
Discovering governing equations from data: Sparse identification of nonlinear dynamical systems | S. L. Brunton, J. L. Proctor, and J. N. Kutz Proceedings of the National Academy of Sciences, 113(15):3932-3937, 2016 | |
Network Structure of Two-Dimensional Isotropic Turbulence | K. Taira, A. G. Nair, and S. L. Brunton Journal of Fluid Mechanics, 795(R2):1–11, 2016 | |
Finite-time Lyapunov exponents for inertial particles in an unsteady fluidsentations of nonlinear dynamical systems for control | S. Madhavan, S. L. Brunton, and J. J. Riley Physical Review E, 93:033108, 2016 | |
Closed-loop turbulence control: Progress and challenges | S. L. Brunton and B. R. Noack | |
Generalizing dynamic mode decomposition to a larger class of datasets | J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N. Kutz | |
Long-time uncertainty propagation using generalized polynomial chaos and flow map composition | D. M. Luchtenburg, S. L. Brunton, and C. W. Rowley | |
State-space identification of reduced-order unsteady aerodynamic models for feedback control | S. L. Brunton, S. T. M. Dawson, and C. W. Rowley | |
Reduced-order unsteady aerodynamic models at low Reynolds numbers | S. L. Brunton, C. W. Rowley, and D. R. Williams | |
Fast computation of finite-time Lyapunov exponent fields for unsteady flows | S. L. Brunton and C. W. Rowley Chaos 20, 017503, 2010 |
Publications | Steve Brunton's Lab (2024)
Top Articles
How to Get Tickets to Taylor Swift's Sold-Out Toronto "Eras Tour" Shows
Suffocating standoff: Giants lose in 10th after Blake Snell, Chris Sale dominate
Resultat.loto.foot
Craigslist Eastern Carolina
Evo Unblocked
Hotscopes Net
Tyrone Unblocked Games Bitlife
Jimmy John's Near Me Open
Robert Jamonte Abrams
Dashae Frost Height
Ewwwww Gif
How the Canada border is becoming the preferred choice for Indians to illegally enter the US
Latest Posts
The Standard Union from Brooklyn, New York
Dodgers share best record in baseball despite injury woes: 'It's remarkable'
Article information
Author: Twana Towne Ret
Last Updated:
Views: 5513
Rating: 4.3 / 5 (64 voted)
Reviews: 95% of readers found this page helpful
Author information
Name: Twana Towne Ret
Birthday: 1994-03-19
Address: Apt. 990 97439 Corwin Motorway, Port Eliseoburgh, NM 99144-2618
Phone: +5958753152963
Job: National Specialist
Hobby: Kayaking, Photography, Skydiving, Embroidery, Leather crafting, Orienteering, Cooking
Introduction: My name is Twana Towne Ret, I am a famous, talented, joyous, perfect, powerful, inquisitive, lovely person who loves writing and wants to share my knowledge and understanding with you.