Publications | Steve Brunton's Lab (2024)

Dimensionally consistent learning with Buckingham Pi

Publications | Steve Brunton's Lab (1)

A concise guide to modelling the physics of embodied intelligence in soft robotics

Publications | Steve Brunton's Lab (2)

Enhancing computational fluid dynamics with machine learning

Publications | Steve Brunton's Lab (3)

An empirical mean-field model of symmetry-breaking in a turbulent wake

Publications | Steve Brunton's Lab (4)

Ensemble-SINDy: Robust sparse model discovery in the low-data, high-noise limit, with active learning and control

Publications | Steve Brunton's Lab (5)

Modern Koopman Theory for Dynamical Systems

Publications | Steve Brunton's Lab (6)

Kernel learning for robust dynamic mode decomposition: linear and nonlinear disambiguation optimization

Publications | Steve Brunton's Lab (7)

Optimal Sensor and Actuator Selection Using Balanced Model Reduction

Publications | Steve Brunton's Lab (8)

On the role of nonlinear correlations in reduced-order modelling

Publications | Steve Brunton's Lab (9)

PySINDy: A comprehensive Python package for robustsparse system identification

Publications | Steve Brunton's Lab (10)

Applying machine learning to study fluid mechanics

Publications | Steve Brunton's Lab (11)

Promoting global stability in data-driven models of quadratic nonlinear dynamics

Publications | Steve Brunton's Lab (12)

Sparse nonlinear models of chaotic electroconvection

Publications | Steve Brunton's Lab (13)

Data-driven aerospace engineering: Reframing the industry with machine learning.

Publications | Steve Brunton's Lab (14)

Nonlinear stochastic modeling with Langevin regression.

Publications | Steve Brunton's Lab (15)

Data-driven discovery of Koopman eigenfunctions for control

Publications | Steve Brunton's Lab (16)

Data-driven resolvent analysis

Publications | Steve Brunton's Lab (17)

Learning dominant physical processes with data-driven balance models

Publications | Steve Brunton's Lab (18)

Modeling synchronization in forced turbulentoscillator flows

Publications | Steve Brunton's Lab (19)

Robust Principal Component Analysis for Particle Image Velocimetry

Publications | Steve Brunton's Lab (20)

Modal Analysis of Fluid Flows: Applications and Outlook

Publications | Steve Brunton's Lab (21)

Machine Learning for Fluid Mechanics

S. L. Brunton, B. R. Noack, and P. Koumoutsakos

Annual Review of Fluid Mechanics, 52:477--508, 2020

Publications | Steve Brunton's Lab (22)

Data-driven discovery of coordinates and governing equations

Publications | Steve Brunton's Lab (23)

Randomized Matrix Decompositions using R

N. B. Erichson, S. Voronin, S. L. Brunton, and J. N. Kutz

Journal of Statistical Software , 89(11):1–48 , 2019

Publications | Steve Brunton's Lab (24)

A Unified Framework for Sparse Relaxed Regularized Regression: SR3

P. Zheng, T. Askham, S. L. Brunton, J. N. Kutz, and A. Y. Aravkin

IEEE Access, 7(1):1404--1423, 2019

Publications | Steve Brunton's Lab (25)

Deep learning for universal linear embeddings of nonlinear dynamics

B. Lusch, J. N. Kutz, S. L. Brunton

Nature Communications, 9(1):4950, 2018

Publications | Steve Brunton's Lab (26)

Sparse identification of nonlinear dynamics for model predictive control in the low-data limit

E. Kaiser, J. N. Kutz, and S. L. Brunton

Proceedings of the Royal Society A, 474(2219), 2018

Publications | Steve Brunton's Lab (27)

Neural-inspired sensors enable sparse, efficient classification of spatiotemporal data

T. Mohren, T. L. Daniel, S. L. Brunton, and B. W. Brunton

Proceedings of the National Academy of Sciences, 115(42):10564–10569, 2018

Publications | Steve Brunton's Lab (28)

Predicting shim gaps in aircraft assembly with machine learning and sparse sensing

K. Manohar, T. Hogan, J. Buttrick, A. G. Banerjee, J. N. Kutz, and S. L. Brunton

Journal of Manufacturing Systems, 48(C):87-95, 2018

Publications | Steve Brunton's Lab (29)

Data-Driven Sparse Sensor Placement for Reconstruction: Demonstrating the Benefits of Exploiting Known Patterns

K. Manohar, B. W. Brunton, J. N. Kutz, and , S. L. Brunton

IEEE Control Systems Magazine, 38(3):63-86, 2018

Publications | Steve Brunton's Lab (30)

Sparse reduced-order modeling: Sensor-based dynamics to full-state estimation

J. C. Loiseau, B. R. Noack, and S. L. Brunton

Journal of Fluid Mechanics, 844:459–490, 2018

Publications | Steve Brunton's Lab (31)

Constrained sparse Galerkin regression

J. C. Loiseau and S. L. Brunton

Journal of Fluid Mechanics, 838:42–67, 2018

Publications | Steve Brunton's Lab (32)

Modal Analysis of Fluid Flows: An Overview

K. Taira, S. L. Brunton, S. T. M. Dawson, C. W. Rowley, T. Colonius, B. J. McKeon, O. Schmidt, S. Gordeyev, V. Theofilis, and L. S. Ukeiley

AIAA Journal, 55(12):4013–4041, 2017

Publications | Steve Brunton's Lab (33)

Intracycle angular velocity control of cross-flow turbines

B. Strom, S. L. Brunton, and B. Polagye

Nature Energy, 2(17103):1–9, 2017

Publications | Steve Brunton's Lab (34)

Chaos as an intermittently forced linear system

S. L. Brunton, B. W. Brunton, J. L. Proctor, E. Kaiser, and J. N. Kutz

Nature Communications, 8(19):1–9, 2017

Publications | Steve Brunton's Lab (35)

Data-driven discovery of partial differential equations

S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz

Science Advances, 3:e1602614, 2017

Publications | Steve Brunton's Lab (36)

Sparse sensor placement optimization for classification

B. W. Brunton, S. L. Brunton, J. L. Proctor, and J. N. Kutz

SIAM Journal on Applied Mathematics, 76(5):2099–2122, 2016

Publications | Steve Brunton's Lab (37)

Discovering governing equations from data: Sparse identification of nonlinear dynamical systems

S. L. Brunton, J. L. Proctor, and J. N. Kutz

Proceedings of the National Academy of Sciences, 113(15):3932-3937, 2016

Publications | Steve Brunton's Lab (38)

Network Structure of Two-Dimensional Isotropic Turbulence

K. Taira, A. G. Nair, and S. L. Brunton

Journal of Fluid Mechanics, 795(R2):1–11, 2016

Publications | Steve Brunton's Lab (39)

Finite-time Lyapunov exponents for inertial particles in an unsteady fluidsentations of nonlinear dynamical systems for control

S. Madhavan, S. L. Brunton, and J. J. Riley

Physical Review E, 93:033108, 2016

Publications | Steve Brunton's Lab (40)

Closed-loop turbulence control: Progress and challenges

S. L. Brunton and B. R. Noack
Applied Mechanics Reviews, 67(5):050801-1–050801-48, 2015

Publications | Steve Brunton's Lab (41)

Generalizing dynamic mode decomposition to a larger class of datasets

J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N. Kutz
Journal of Computational Dynamics, 1(2):391–421, 2014

Publications | Steve Brunton's Lab (42)

Long-time uncertainty propagation using generalized polynomial chaos and flow map composition

D. M. Luchtenburg, S. L. Brunton, and C. W. Rowley
Journal of Computational Physics, 274:783–802, 2014

Publications | Steve Brunton's Lab (43)

State-space identification of reduced-order unsteady aerodynamic models for feedback control

S. L. Brunton, S. T. M. Dawson, and C. W. Rowley
Journal of Fluids and Structures, 50:253–270, 2014

Publications | Steve Brunton's Lab (44)

Reduced-order unsteady aerodynamic models at low Reynolds numbers

S. L. Brunton, C. W. Rowley, and D. R. Williams
Journal of Fluid Mechanics, 724:203–233, 2013

Publications | Steve Brunton's Lab (45)

Fast computation of finite-time Lyapunov exponent fields for unsteady flows

S. L. Brunton and C. W. Rowley

Chaos 20, 017503, 2010

Publications | Steve Brunton's Lab (46)
Publications | Steve Brunton's Lab (2024)
Top Articles
Latest Posts
Article information

Author: Twana Towne Ret

Last Updated:

Views: 5513

Rating: 4.3 / 5 (64 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Twana Towne Ret

Birthday: 1994-03-19

Address: Apt. 990 97439 Corwin Motorway, Port Eliseoburgh, NM 99144-2618

Phone: +5958753152963

Job: National Specialist

Hobby: Kayaking, Photography, Skydiving, Embroidery, Leather crafting, Orienteering, Cooking

Introduction: My name is Twana Towne Ret, I am a famous, talented, joyous, perfect, powerful, inquisitive, lovely person who loves writing and wants to share my knowledge and understanding with you.